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Gauge Group of Gravity, Spinors, and Anomalies 
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A discussion is given of the gravitational anomalies that arise from coupling 
Weyl spinors to gravity, treating the metric, the soldering form, and the connec- 
tion as independent dynamical variables. This system is strictly analogous to 
Weyl spinors coupled to Yang-Mills fields and a nonlinear sigma model. The 
larger gauge group of this formulation is seen to lie at the root of the equivalence 
between Einstein and Lorentz anomalies. 

1. I N T R O D U C T I O N  

General  relativity is usually studied in the metric formulat ion,  in which 
the fundamenta l  dynamical  variable is the Riemannian  structure g ~ .  For  
some purposes,  (in part icular  to define spinors) it is necessary to go over 
to the n-bein formulat ion,  in which the fundamenta l  dynamical  variable is 
the soldering form 0-~. Here, 0 is regarded as an i somorphism f rom the 
tangent  bundle  TM, with coordinate  bases {0~}, to an " in ternal"  vector 
bundle  ~wi th  fibers ~ n, n = dim M, and bases {~,~} or thonormal  with respect 
to a fixed fiber metric. The soldering form 0 can be used to pull back the 
fiber metric in ~ to T M :  

--rTt --~ 
g,,~ = 0 t 0  ~6,~ (1) 

Conversely,  the Riemannian  structure g determines the soldering form ff 
up to a local O ( n )  gauge t ransformation.  Therefore,  when we go f rom the 
metric to the n-bein formulat ion,  in order  not  to introduce new physical  
degrees o f  f reedom, we have to enlarge the original gauge group Diff M to 
the group Aut~  of  or thogonal  au tomorphisms  of  ( (covering arbitrary 
diffeomorphisms o f  M) .  For  reasons that  have been discussed elsewhere 
(Percacci,  1982, 1984), it is convenient  to go one step further and to treat 

tCenter for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, 
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. 

2On leave of absence from SISSA, Trieste, Italy. 
493 

0020-7748/86/0500-0493505.00/0 • 1986 Plenum Publishing Corporation 



494 Pereacci 

the soldering form and the metric as independent dynamical variables and 
at the same time enlarge the gauge group so that this new formulation is 
equivalent to the old. This has also been discussed by Komar  (1985) based 
on completely different motivations. For notational reasons, let us call 
the vector bundle that was previously called ~ and let {e,} be local bases 
in r we reserve the barred indices for orthonormal frames, to be introduced 
below. In the new formulation, the fiber metric in ~ is no ~onger fixed, but 
is a dynamical variable ~c,~, (a set of scalars under coordinate transforma- 
tions), along with the soldering form 0%,. We can again pull back the fiber 
metric of  r by means of 0 to get a Riemannian structure on M: 

m n g.~ = 0 .0  ~:~, (2) 

Notice that now it is no longer possible to identify the soldering form with 
the n-bein of  g. In this formulation, the gauge group is Aut~L(")r We can 

m m fix the GL(n) gauge in such a way that either 0 ~ = 6 ~, thus recovering 
the original metric formulation, or ~:,~, = 3,,,, thus recovering the n-bein 
formulation (Percacci, 1982, 1984). 

This generalized formulation is again unsuitable for the treatment of  
spinors, because spinors are only defined for the orthogonal groups. There- 
fore, if we want to couple spinors to gravity and at the same time preserve 
the full Aut~L("~r gauge group, it is necessary to define n-beins for the fiber 
metric K. Just as we regarded the n-bein for g as an isomorphism of TM 
to ~ so we will regard the n-bein for K as an isomorphism z of  ~ to another 
vector bundle ~ with a fixed fiber metric and orthonormal bases {~,~}. Then 
K is the pullback of this fixed fiber metric by r: 

F g 
K m n  = 7" m T n ~ g  (3) 

I f  we define the vector-bundle isomorphism O from TM to ( b y  composing 
T with 0: 

0 p - -  7" r 0 19 (4) 

then, from equations (2) and (3), equation (1) follows again. The gauge 
group will now consist, roughly speaking, of  O (n) Yang-Mills type transfor- 
mations acting on the barred Latin indices, GL(n) Yang-Mills type transfor- 
mations acting on the unbarred Latin indices, and diffeomorphisms acting 
on the Greek indices. I describe this gauge group more precisely in Section 
2. In Section 3 I discuss the anomalies for a system consisting of a G 
Yang-Mills field coupled to a G/H nonlinear sigma model. This system is 
very closely related to theories of  gravity and it will be seen that the properties 
of its anomalies are shared by gravitational anomalies. 

In Section 4 I first review the classical Dirae equation and its currents 
in a background gravitational field with torsion. It will be seen that the 



Gauge Group of Gravity, Spiuors, and Anomalies 495 

gravitational coupling of  spinors is essentially the same as their coupling 
to a gauged nonlinear sigma model. I shall denote by V a covariant derivative 
in ~: such that 

V.Km. = 0 (5) 

The components of V will be denoted w/ ' . .  The derivative V can be pulled 
back by means of 0 to a covariant derivative D in TM whose components 
are 

FA"~ = 0m"~o/~n0"~ + 0m"0.0'~ (6) 

Clearly, D is also metric, in the sense that D~g.v = 0. Finally, V can be 
regarded as the pullback by r of a covariant derivative V in f with com- 
ponents 

- r~  rFl r s r~ r 
(.0 A fi : 7" rO)A sTf i  + T r0A" / ' f i  (7) 

The metricity condition is equivalent to the statement that 0 5 ~  =-05~m. 
The torsion of V is the covariant exterior derivative of 0: 

O f ' ~  = 0 ~ 0"~ -0~0"~ + w .'nO'~ - w / " . O ~  (8) 

The torsion of V is given by the same formula with 0 replacing 0 and 05 
replacing to; the torsion of D is given by O~,~ = FP~,~ - FP~,. I then discuss 
the geometrical and physical meaning of gravitational anomalies (Alvarez- 
Gaum6 and Witten, 1983) in this generalized setting. The inclusion of torsion 
is quite straightforward and does not change the physical meaning of 
anomalies. The larger gauge group is seen to lead, via different partial gauge 
fixings, to the so-called equivalence of diffeomorphism and local O(n) 
anomalies (Bardeen and Zumino 1984). 

2. THE GAUGE GROUP AND ITS LIE ALGEBRA 

Let us denote Iso(TM, f) the space of all isomorphisms from TM to 
(soldering forms 0), Iso(~:, f )  the space of all isomorphisms from ~: to 

(n-beins ~-), Riem ~ the space of  fiber metrics K in ~=, and c~(~:) the space 
of linear connections o~ in ~:. Since we are going to interpret the gauge 
transformations from an active point of view, the bundles TM, ~ and 
come with fixed local bases {0r}, {era}, and {~.~}. When we go over from 
the formulation based on the variables w, 0, • to the one based on the 
variables w, O, T, we have to enlarge the gauge group to include Aut~ 
the vertical orthogonal automorphisms of ~ The new gauge group is the 
group 

Aut ~215 ~ Z~ 
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(denoted Aut CG ~ for notational simplicity). It consists of triples (u, a, f )  
w i t h f c  Diff M, (u , f )  c AutGL(n)~, and (tT, f )  ~ Aut~ The group Aut~L(")r 
is a normal subgroup with the obvious injection a : ( u, 1riM) ~ ( u, Id ~, Ida) .  
There is a short exact sequence: 

1 -~ Aut~L(')~: _2) Aut ~:0 ~ Aut~ -> 1 (9) 

where/3 : (u, ti, f )  ~-~ (t~, f ) .  For each 0 ~ Iso(TM, ~) we can define an injection 
y 0 : Aut~ Aut ~G ~ by 

y~ T f  o 0 -1, ft, f )  

For each z e Iso(~, ~) we can define an injection y" by 

y" : (ti, f )  --> (~.-1. ti o % ti, f )  

All these homomorphisms split the sequence (9) and hence define semidirect 
product structures in Aut ~G ~ Also note the injection y : A u t ~  Aut scO 
(g iven  by y(ti, I d a ) =  ( Ide, ~, IdM ). 

In general, it is not possible to define a "natural" subgroup AutGL(')~ :. 
One needs additional structures. For instance, if M is parallelizable, and 
a global trivialization of ~ is given, we can embed Aut~C("~: in Aut ~:Q~ 
by ~ : (u, f )  ~-~ (u, jr, f ) ,  where f denotes the (trivialization dependent) lift of 
f :  fC(x, a) = ( f ( x ) ,  a). 

The gauge group acts on the fields from the right as follows: 

0~'> 0t = U - 1 ~  0 ~ Tf  (10) 

r~-->'r' = zi -1 o "r o u (11) 

V~. . -~Vt ,  Vlv  O" = U - - I ( V T f ( v ) ( U  o (7" ~  (12) 

Let A: U--> GL(n)  be the local representative of (u , f )  on the open set 
U, defined by 

u( e~( f -~(x )  ) ) = e , ( x )A 'm(x )  

and similarly A : U ~ O (n) be the local representative of (~, f ) .  Furthermore, 
let x' =f-~(x) .  The transformation laws become 

, m  , )~ 0 , ~ ( x ) = A - l ' . ( x ) O ' , , ( x  (13) 
OX 

"c'a',,(x ') = X- ' ' , (x) ,r~s(x)AS, ,(x)  (14) 

ox.( 
o9'~ . (x ' )  =~x,X A - l ' ~ , ( x ) o ) . ~ ( x ) A , , ( x ) + A - l % . ( X ) ~ x ~ A . ( x  " (15) 
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If  we assume appropriate boundary conditions on the fields and the gauge 
transformations, this action is free and we have a principal bundle with 
structure group ~3 = Aut ~:O ~ total space 

= ~(~:) x Iso( TM, ~:) x Iso(~:, 0 

and base space g/~q. The configuration space of the gravitational field is 
the subspace ~ of g/cg defined by the constraint (5). 

One sees immediately from the transformation properties that the 
subgroup Aut~L(")~: acts transitively and freely on Iso( TM, se); the stabilizer 
of a given 0 under the action of ~3 is the subgroup 7 o Aut~ Similarly, 
Aut~L(")sc acts transitively and freely on Iso(~:, 0 ,  and the stabilizer of a 
given z under the action of  ~ is the subgroup y 7 Aut~ Therefore, we 
can also write 

= ( ~ ( ( )  x Iso(TM, ~))/Aut~ 

where ~(~) denotes the space of O(n) connections in ~ Let P and /5 be 
the (total spaces of) the principal GL(n) and O(n) bundles associated to 
~: and ~ The Lie algebra of  (left-invariant vector fields on) Aut CO~ is 
isomorphic as a vector space to T~d(Aut scff~(), which is the space of 
GL(n) x O(n)-invariant vectorfields on the fiber product 

P x  /5 
M 

[i.e., triples (v, 13, w) with w a vector field on M, v a GL(n)-invariant vector 
field on P projecting on w, ~5 a O(n)-invariant vector field on /5  projecting 
on w]. The space of GL(n) x O(n)-invariant vector fields on 

P x  /5 
M 

is itself an algebra with bracket 

[(Vl, /'~1, Wl), ('/')2, ~2, W2)] 

= ([v,, v2], [~5,, 152], [wl, w2]) (16) 

Let p(v, ~, w) and h(v, ~3, w) be the right- and left-invariant vector fields on 
Aut CO ( w h i c h  coincide with (v, r3, w) at the identity. It can be shown that 
p is an isomorphism of algebras, so A is an antiisomorphism: 

[a (v , ,  ~,, w,), a(v2, ~2, w~)] 

= -A([ (v l ,  ~5,, w0, (v2, v2, w2)]) (17) 

Given the local bases in ~ and ~ we have local trivializations in P and /5. 
We can accordingly split v and ~3 into parts tangent to the fibers and to M. 
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Let us represent (v, 15, w) as (e, g, w), where e : M  ~ L i e G L ( n )  and g : M  
LieO(n) are such that at each point p - (x, a) ~ M x GL(n ) ,  v ( p )  = w(x )  + 
(the value at a of the right GL(n) - invar ian t  vector field that coincides with 
e (x )  at the origin), and similarly with 0. Since w is independent of the 
coordinate in the fiber, we have 

[(el, ~1, wl), (e2, ~2, w~)] 
= ( - - [ 8 1 ,  e2]  "~- Wll'Lol~e2 -- W2P'Opel, 

- [~ , ,  e2] + w,~Oj2 - w ~ o j 1 ,  [w~, w~]) (18) 

(The minus signs arise because e and g are left-invariant, while v and 
are right-invariant.) Putting together these formulas, we obtain the brackets 
in the Lie algebra of Aut ~ G (  in terms of the local components (e, g, w): 

[X(~l, e,, Wl), x(~2, ~2, w~)] 

= /~ ( [ e l ,  e2] --  Wll~O~e2 "~- W21~O~el, [ ~ 1 ,  ~2] --  WltXOt~E2 

+ w2"Oj1 ,  - [ w , ,  wz]) (19) 

We notice that the vertical vector fields (e, g, 0) form an ideal corresponding 
to the normal subgroup 

AUtMS~O ( =  Aut GL(")~ X Aut~" )~  

If M is parallelizable and fixed global trivializations of s ~ and ~ are given, 
it becomes meaningful to talk about the vector fields of the form (0, 0, w) 
and they are seen to form a subalgebra [in general a vector field of the form 
(0, 0, w) in one trivialization would have a vertical component in another 
trivialization]. If  Diff M is regarded as a subgroup of AutCL(")s~, this subal- 
gebra corresponds to the subgroup 5 Diff M. In the absence of  a global 
trivialization or other additional structures, the gauge algebra does not 
contain any "natural" subalgebra isomorphic to the algebra of the 
diffeomorphism group. 

The Lie algebra of  Aut ~ O ~  is realized as vector fields on the space 
~. We denote by 6(e, ~, w) the fundamental vector field generated by 
A(e, g, w). These vector fields again obey the algebra (19). This can also be 
verified more directly as follows. Under an infinitesimal gauge transforma- 
tion x '~" = x ~ - w j', Am~ = 6ran + emn, ~kmn = 6 ~  -4- grn n the fields transform by 

60"~, = w~ O ~ O"~, + O"~O ~ w ~ - e~,O"~ (20) 

6~-~, = wX Ox"r~, - g~'r~, + ~"~e ~. (21) 

6w~m. = wZ Oaw,m, + wa~,O,w a § V.e" .  (22) 

Decomposing 
6 6 6 

6@, ~, w ) =  3 0 - - +  6~ ' - -+  & o - -  
30 6"r &o 
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we can explicitly compute the functional brackets and show that they obey 
the algebra (19). 

3. AN ANALOGY 

Consider the coupling of Weyl fermions to a background YM field A 
on a G vector bundle ~. The Dirac operator is a map s174 
F(7/_| where T/• denote the positive and negative chirality spinor 
bundles. There are inherent ambiguities in the definition of det DA and 
therefore the one-loop effective action F ( A ) = - l n  det ]~A, when regarded 
as a function on c~(~=), is not constant on the orbits of the gauge group 
~3 = Aut~=. The anomaly is the differential of F along the orbits. Det DA 
is a smooth, complex function with constant modulus on each orbit (Alvarez- 
Gaum~ and Witten, 1983); if c~ is multiply connected, the phase of det ]~A 
may vary by a multiple of  2~-i as one goes through a noncontractible loop, 
and hence F may not be a single-valued function on the orbit. Therefore 
the anomaly should be thought of as a closed but not necessarily exact 
one-form a c on the gauge group: a ~ ( e ) = ~ F = ~  i e V~(Ji), where (J~')= 
6F/SAi~. The condition that da = 0 is known in the physical literature as 
the Wess-Zumino (1971) consistency condition. The exact coefficient of the 
anomaly can only be determined by an explicit calculation, but its general 
form can be found by solving the Wess-Zumino consistency condition in 
terms of  secondary characteristic classes (Atiyah and Singer, 1984; Alvarez- 
Gaum6 and Ginsparg, 1986). 

As a result of the Wess-Zumino consistency condition, the effective 
action is known everywhere on the orbit mod 27ri once it is known at a point: 

r(A ~) = F(A) + Jlg a G (23) 

where A g denotes the gauge transform of A and the integral is along any 
path in ~ joining the identity to g. 

What happens when the system is further coupled to a nonlinear sigma 
model? Consider first the case when the NSM has values in G. One has to 
assume that ~: is trivial for the nonlinear scalar field to be globally defined. 
The bosonic configuration space is then (~(~:)xF(~:G))/Aut~t~; here ~ 
denotes the principal G-bundle associated to ~. Since the gauge group acts 
freely and transitively on F(~:o), this is just ~(~:) and the gauge group is 
reduced to the identity. This kinematical fact suggests that there should be 
no anomaly for this system. Indeed, let us define the Weyl operator 

/~A,~ : r (n+ | ~) -~ r (n_ |  ~) 
for fixed A c  qr g ~ F ( ~ )  by 

B~A,~) = g-' ~ g  = ~ (24) 
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Under a gauge transformation ~, g~->g-~g, so this operator is gauge 
invariant: 

~(Ag, g ~) = ~(Ag) g-tg = ~ A  g = ~(A,g) (25)  

As a consequence, F(A, g) = - I n  det t~(A,g) will be constant on the orbits of 
~, i.e., there will be no anomaly. From equation (24), F(A, g) = F(Ag), so 
from equation (23) 

f f (A,g)=F(A)+ a c (26) 
1 

The second term on the rhs is the Wess-Zumino-Wit ten  action (Wess 
and Zumino, 1971; Witten, 1983; Alvarez-Gaum6 and Ginsparg, 1986). This 
formula is usually interpreted in the following way: suppose the spinors 
were not directly coupled to the NSM, i.e., /~(a,g~ = Eia. Then, the theory 
would have the same anomalies as the pure gauge case. However, in the 
presence of the NSM there exists a local functional of A and g that can 
be added as a counterterm to the effective action and whose gauge variation 
exactly cancels the anomaly. The interpretation presented above will be 
seen to be more convenient for the sake of  comparison with gravity. 

The discussion in the preceding section motivates us to consider the 
more complicated case when G is a semidirect product G = K~,~H (i.e., 
there is a split exact sequence t ~ K ~  G ~  H ~  1). We couple the G 
Yang-Mills field to an NSM with values in G/H. The elements of  G are 
couples g = (k, h) and the multiplication is 

(k, h)(k', h') = (k. Oh(k'), hh') 

where 0 : H ~ Aut K is the homomorphism defining the semidirect product 
structure. The map G/H-~ K given by (k, h)H~--~k is a diffeomorphism 
and the action of K as a subgroup of G on G / H  is the same as left 
multiplication in K. So, given ~b = gH, there is a unique k c K such that 

= k(eH). 
Let P be the (total space of the) principal G bundle associated to ~. 

Then R = P / H  is the (total space of the) associated bundle ~a/u; Q = P / K  
is naturally the total space of  a principal H bundle ~" with action (pK)h = 
(ph)K. The configurations of  the NSM are sections of  ~o/H; since ~:~/, is 
isomorphic to a principal K bundle, this means that it has to be globally 
tfivializable. I f  a G-automorphism of P is of  the form (k, 1) in one trivializ- 
ation, then it is of  the same form in any trivialization. These automorphisms 
form a subgroup denoted A u t ~ .  There is an exact sequence 

1 ~ Aut ~ ~: ~ Aut ~ :  ~ A u t ~  -~ 1 (27) 
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Each section q5 of sc~/n defines an embedding of Q into P and hence a 
homomorphism 76 : Aut~'--> AUt~ which splits the sequence (27). If &0 
is defined by cbo(x)= eH (in all charts), the automorphisms in the image 
of 7~o are those whose local representatives are of the form (1, h) with 
h : M D U - ~ H .  

The configuration space of the system is 

= (cO(g) x F ( ~ o / . ) ) / A u t ~  

We can choose a "unitary" gauge such that ~b = 4)o; this leaves a residual 
gauge freedom T ~0 A u t ~ ' ,  so 

= rg(sQ/T~o AutH~ " 

Again, this kinematical argument suggests that in the unitary gauge defined 
by 4)o any anomaly should be in the image of y6o. Given any ~b ~ F ( ~ / H ) ,  
let k be the unique element of A u t ~ :  such that k-~q5 = (ho. The Weyl 
operator 

(a,e,) : r (~+ | so) -+ r ( r / -  | ~: ) 

is defined by 

= k - l e a k  = 

Under a gauge transformation /7e Aut~ : ,  ~b v =/7-1~b, so 

~(A~& '2) = ~ ( a k )  ~ ik = DAk = ~(A,49) 

Under a transformation /~ belonging to the image of 3/"~ we have 

q5 ~;=/~-~q~ = (1,/7-')(k, h)H = (~g-,(k), h - ' h ) H  

and furthermore 

(1,/~)(~bg-,(k), 1) = (k, 1)(1,/~) 

(28) 

(29) 

SO 
~(Ah,tb 'q) = ~(Aff)%-l(k) = ]~(Ak) 'g = ]7--1]~(A,&)~7 (30 )  

So the Weyl operator is invariant under A u t ~ :  and covariant under gauge 
transformations in the stabilizer of 4)0. Consequently, the effective action 
will be constant along the orbits of AutOs c and, as expected, any anomaly 
will be in the subgroup y % A u t ~ .  Since F(A, 4~)= F(Ak), we have 

f? F(A, 4))= F(A) + a K (31) 

where a K denotes the anomaly for K. As in the case H = {e}, we could 
interpret this formula by saying that in the presence of a K-valued NSM 
the component of the gauge anomaly in the subgroup A u t ~ :  can be canceled 
by adding a local functional of A and ~b. 
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If  we change the unitary gauge by choosing a different local trivializ- 
ation so that the standard section is ~b~, the anomaly is transferred to the 
subgroup T6~ Aut ~ .  In equation (31) this is effected by adding the term 

k' a r, where is the gauge transformation such that th k'= k '-~& = ~b'o. 
To summarize the result of this discussion: I call a GoIdstone boson 

(in a generalized sense) a field whose configuration space is a homogeneous 
space for the gauge group. I call a unitary gauge (in a generalized sense) 
a gauge in which the Goldstone boson is constant. In a unitary gauge, the 
anomaly lies in the stability subgroup; different unitary gauges are related 
by gauge transformations in the anomaly-free normal subgroup. The 
anomaly is moved from one stability subgroup to another by adding suitable 
Wess-Zumino counterterms. We shall see that exactly the same phenomena 
occur in gravity. 

4. GRAVITATIONAL ANOMALIES 

Assume that M has even dimension n and admits a unique spin 
structure (this is the case, e.g., if M is simply connected). The spin structure 
is a principal Spin(n)-bundle with total space Q and a bundle homomorph- 
ism Q -> 15 which is a double cover. I call ~7§ and ~_ the associated bundles 
of positive- and negative-chirality Weyl spinors; ~ = ~7§ ~7- is the bundle 
of Dirar spinors. Relative to a local field of orthonormal frames {~,~} in 
one has Dirac matrices ~ satisfying {~'~, ~ } = 2 ~ r ~ ;  the generators of 

- r ~  lr -n5 Spin(n) in the Dirac representation are o" =~tY , ~/~]- The connection 
in ~ lifts to a "spin connection" in ~/denoted by the same symbol and with 
the same local components o3x~,. The covariant derivatives of spinors and 
conjugate spinors are 

V~r = 0~r + �89 (32) 

V~0 = Ox~ - �89 ""~" (33) 

The action for tp and O, treated as independent variables, is 

I 4 1. - - ~ -  /x-  S(~b, j ;  o3, if)= d xx /g{~(0T 0,~ V~b-ffr~V~j~/"~b)-mO~} 

and the resulting field equations are 

i~/~O~V ~ + li'yroFxOxPpO - m~b = 0 

i O ~ V ~  ~ + ~ i ~  r/~Tx O~Pp + m~ = 0 

The O ( n )  current is obtained varying S with respect to 03: 

j~r~ 1 8S i 

(34) 

(35) 

(36) 

(37) 
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The (nonsymmetric) energy-momentum tensor is obtained by varying S 
with respect to 0: 

1 ~S 
T ~  

i - - _ f i  - -  - -  i - -  - -  - - - h  

i . . . . .  n - r  p + ]  ~. [ f f3"  0~ VoO- f f f lV~ , t~ .  ~ O - m d ~ @ ]  (38) 

Notice that the last term vanishes when the equations of  motion are satisfied. 
Using the equations of motion and some Dirac algebra, one can find that 
the current and the energy-momentum tensor satisfy the following conserva- 
tion laws: 

( D |  ~'~ - OpP~J ~'~ + T t~ ]  = 0 (39) 

D~Tx ~ - O.~p Tx p + Op~a T~ p -/~,~aa~J~mn = 0 (40) 

Here D |  denotes the covariant derivative acting on both sets of  indices 
of  J, and /~  is the curvature of 03. Equation (39) expresses the conservation 
of  angular momentum and equation (40) the conservation of energy- 
momentum (Hehl et aL, 1976). 

In this brief review of the gravitational coupling of  Dirac spinors, we 
have described the gravitational field by means of the variables 03, ~ What 
would change if we used the variables to, 0, ~-? The action would be 

S(~b, 0; to, 0, ~-) = S(~b, ~; o3, if) (41) 

with 05 and ff given by (4) and (7). Defining the spacetime-dependent Dirac 
matrices 3"m m -~ mn = Z~ 3', which satisfy {3m, 3 '"}=2k , and the spacetime- 

= z[ 3/ , 3'"] = ~'~"r~ "#~, we would derive the Dirac dependent generators or m" ~ m 
equation 

�9 m tx 1 ~ mn 1 p 

which is obviously the same as equation (35). The current that one obtains 
by varying S with respect to to is the same as the current (37) except that 
the barred indices are transformed to unbarred ones by means of  ~'. The 
two "energy-momentum tensors" 

- T , ~  
TraP" % / g  ~ o m / z  ' 4 g  ~Trn  r 
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are easily seen to be related among themselves and to the energy-momentum 
tensor of equation (38) by 

0 "r r Tm" ~, n . r = 0 ,  T in ,  T,.n -="ra, [T,,  + ( D @ V ) x J X , / - O / ' x J X , ,  r] 

This is a consequence of the larger gauge group of this formulation. 
Now let y = l-[ ~=1 ~2~ and P~ = 1(1 + ~) : r /~  ~7• be the chiral projectors. 

When m = 0 we define the Weyl operator/~(~.~): F(r/+) ~ F(r/_) by 

,O(~,g) --m ,~ 1 -Y-x p =(zy  O,n V~+~y Or 0;, p)P+ (42) 

and 

/~(o,,o,~) =/~(,~,~) (43) 

Denote w a, 0 a, z A the fields transformed as in equations (13)-(15) with 
S_ = 0, w = 0. If we observe that equations (7) and (4) can be written formally 
o3 = to'-X and 0 = 0"-', then the analogy of this definition to equations (24) 
and (28) becomes immediately clear. When n = 4 k - 2 ,  the effective action 
f'(w, 0, z)=-lndet/~(o, .o, , )  is not gauge invariant (Alvarez-Gaum6 and 
Witten (1983)); we regard the anomaly as a one-form on Aut ~:q3~ From 
the very definition [equation (43)] it is clear that the operator k~(o,,o,T) is 
invariant under the normal subgroup a Aut~tL(")sc; so the same will be true 
of the effective action 

F(o)  A, 0 A, T A) = F(oJ, 0, T) (44)  

We define the function F on cg(() x Iso(TM, ~) by F(o3, O) = - l n  det D(,~,o). 
Then F(w, 0, z) = F(oS, O). Let Zo and 0o be defined by ~n ~a Zo r = 6  ~and00"~=  
&'~ in all charts; we shall sometimes write zo = 1, 0o = 1. Putting A = z -1 or 
A = 0 in equation (44), we get 

F(o), 0, r ) =  1~(o3, if, 1)= F(F, 1, O)= V(oS, O) (45) 

with F=r ~ [see equation (6)]. So the subgroup a Aut~4c(")~ will be 
anomaly-free; in the "unitary" gauge r=Zo  the anomaly will be in 
y% Aut~ 

Explicit calculation in two dimensions shows that the anomaly 
"originally" lies in the vertical subgroup y~o Aut~ (Langouche, 1984; 
Leutwyler, 1984). The same is true in higher dimensions (Leutwyler and 
Mallik, 1986). One expects this to happen on the basis of the analogy with 
the anomalies of gauge theories (Langouche et  al., 1984); furthermore, 
because of the remark in Section 2, it would generally not make sense to 
say that the anomaly is in Diff M. This is seen even more clearly if we look 
at the physical meaning of the gravitational anomalies. The functional 
derivatives of 1~ (or F) with respect to the background fields are the vacuum 
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expectation values of the currents; in analogy to equations (37) and (38) 
and what followed we define 

o 1 6 F  - 1 6 F  1 6 F  

(46) 
1 8F 1 6F 

Only two of these quantities are independent: using equation (4) and (7), 
one finds that 

r m~'~ ( J  ~ ) 
o 

( T,  nt, ) = F 

( Tr n) = ( T~ n ) + (D | V)a (JX," ) - OpPA(JAr m > 

From now on we take J to be the current and T the energy-momentum tensor. 
If we now vary I" with respect to an arbitrary infinitesimal transforma- 

tion of AutCL(")x~ ~ and use these relations we find 

6(e, g, w)F = f d4x ~/g{- g~e[( T me) + (D| - | 

- w %5~m~ [( T ~) + (D | (Jam") - @o~ (jxm~>] 

w,.[D.(T.)+| O (To.)_| .o(Tf) o ~ ,~ - - R ~ , ( J  p ) ] }  ( 4 7 )  

We observe that e drops off in accordance with the previous remark. 
Comparison with equation (39) and (40) now shows the following: an 
anomaly for the subgroup Aut~ implies nonconservation of angular 
momentum and an anomaly for Diff M (whenever this subgroup is defined) 
implies nonconservation both of energy-momentum and angular momen- 
tum. This is again related to the remarks in section 2, for a "purely Diff M "  
anomaly in one trivialization would contain an Aut~ part in another 
trivialization. 

We now make contact with the work in Bardeen and Zumino (1984). 
Assume that M is parallelizable and fixed global fields of frames are given. 
For each K ~ Riem ~:, there is a unique transformation 3_ in the subgroup 
y Aut~ makes the matrix ~ r r symmetric. The residual gauge group 
is (isomorphic to) Aut~ it consists of  transformations (A, f )  belonging 
to the subgroup ~ AutaLt"~ defined in Section 2, followed by a field- 
dependent transformation A=A(A,  r) in y Aut~ satisfying ArrA= 
A-~rA, which restores the 'symmetry of r. In the symmetric gauge, r is 
uniquely determined from ~; therefore, we now think of [" as a functional 
of ~o, 0, and ~. 



5 0 6  Percacci  

Although isomorphic to the anomaly-free normal subgroup 
A1 t-GL(n)"~ a . . . .  ~ c, this subgroup Aut~Z'(n~ is really different because it implies 

a readjustment of  the Aut~ gauge. As a consequence, Aut~L(")~: is now 
anomalous. To see this more clearly, let us first fix part  of  the residual gauge 
invariance by going to the "n-bein gauge" K = K0 = 1 (see Section 1). The 
residual gauge freedom is now the group Aut~ given by transformations 
of  the form ( A , A , f )  with A : M ~  O ( n ) .  The symmetric n-bein for Ko is 
~'o = 1, so the group Aut~ has the same anomaly as y 7~ Aut~ 

~(,o A, 0 A, Ko ~) = ~(o~ ~, 0 ~, ~o) = r(,o*, 0 ~) 

=r(~o,o)+ ~~ Ko)+ o(~ (48) 
1 1 

The induced anomaly in Aut~L(~)~: is an extension of the induced anomaly 
in Aut~ The one-form o~ o(~) on Aut~ naturally extends to a one-form 
a ~t(~ on Aut~L(~)~; at the level of  secondary characteristic classes, one 
continues the invariant polynomials on LieO(n)  to invariant polynomials 
on L i e G L ( n )  (Langouche et al., 1984). Then, one has instead of equation 
(44) 

^ A ^ - -  f A  
F(w , 0 A, K A) =F(w, 0, K)+ c~ c t (~  (49) 

3 1 

One can also fix part of the Aut a t (~  ~-gauge by choosing the "metric gauge" 
0 = 0o = 1 (see Section 1). The stabilizer of  0o is a subgroup of AutCt(~)~: 
isomorphic to Diff M;  it acts on the fields as in equations (13)-(15) with 
A = Ox/Ox'  and A = A(A, ~-). As a consequence, there is an induced anomaly 
in Diff M (Langouche et al., 1984). The metric gauge and the n-bein gauge 
are related by a transformation of A u t ~ t ( ~ :  with A = 0-~. From equation 
(49) we obtain, instead of equation (45) 

i 
ff-I  

I'(o3, O, 1)=  F(F, 1, g ) +  a eL(") (50) 
1 

On the lhs one has the effective action in the n-bein gauge, which has an 
anomalous variation under Aut~ on the rhs the effective action in the 
metric gauge (a functional of  the connection F ~  in T M  and the Riemannian 
structure g ~ ) ,  which has an anomalous variation under Diff M. They are 
related by the addition of a local functional of  w, 0, and K, a gravitational 
analog of  the Wess-Zumino-Wit ten action. 
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